

SuperSonic Imagine "The Innovative Ultrasound Company"

introduces the Aixplorer® V11 release featuring

Advanced Breast Imaging Solutions Clinical Innovations including "TriVu" Real-Time Simultaneous B-mode, SWE™ and Color+ mode, Angio PL.U.S. PLanewave UltraSensitive™ Imaging on the XC6-1

> Fusion, Volume Navigation and Needle Guidance Solutions

V11 Diagnostic Excellence & Innovation

- A complete line of probes for breast imaging including the new all-purpose SL18-5
- A new compact linear array SLH20-6 for high resolution imaging
- Outstanding vascular color sensitivity with Angio PL.U.S. and the new TriVu* simultaneous mode
- Real-time SWE on all breast probes, 3D breast imaging, and more!

- TriVu real-time simultaneous imaging
 - Combines B-mode, Color+ and SWE™ into a powerful real-time simultaneous mode
 - Setting a new bar for innovation and workflow leveraging UltraFast imaging
 - Allows simultaneous visualization of anatomy, flow and tissue stiffness

*Pending FDA 510k clearance

V11 Diagnostic Excellence & Innovation

- Angio PL.U.S. PLanewave UltraSensitive[™] imaging
 - A new solution for microvascular visualization, now available on the XC6-1 Abdominal transducer
 - Real-time and exquisite High Definition imaging
- Fusion, Navigation & Needle Guidance
 - Synthesizing cross-modality diagnostic information for complete diagnostic imaging confidence
- Solution Evolution
 - New capabilities and enhancements in Imaging, Connectivity, Reporting, Workflow and Research
 - Wireless DICOM*
 - Improved Reporting*
 - SonicResearch capability to capture raw SWE data

*Pending FDA 510k clearance

AIXPLORER® V11 COMPREHENSIVE AND CONFIDENT BREAST IMAGING

Breast Imaging Comprehensive Suite of Breast Optimized Transducers

Breast Imaging Outstanding B-mode Image Quality

Breast Imaging Clinically Realized Innovation

- ShearWave Elastography
 - In both 2D and 3D, SWE[™] allows physicians to visualize and analyze the stiffness of tissue in a real-time, reliable, and reproducible manner.
 - SWE is an important parameter in diagnosing potentially malignant or other diseased breast tissue.
- Angio PL.U.S. PLanewave UltraSensitive™ imaging
 - Angio PL.U.S. provides a new level of microvascular imaging through significantly improved color sensitivity and spatial resolution.
- NEW: TriVu*
 - B-mode, SWE[™] and Color+ real-time simultaneous imaging
 - Cutting edge simultaneous imaging allowing physicians to concurrently visualize anatomy, tissue stiffness, and blood flow in breast tissue in real-time.

Breast Imaging Clinical Advantages

- "Best in class" high frequency, ultra-wide bandwidth SL18-5, SLH20-6 and SL10-2 probes
 - Excellent lesion conspicuity and high frame rates to survey suspect areas
 - Best in-class spatial resolution to resolve anatomic detail in fundamental and harmonic modes
 - Deep tissue penetration with the lower frequency SL10-2 for challenging cases
 - Sensitive Color Flow imaging in CFI, CPA and dCPI modes
- Angio PL.U.S. PLanewave UltraSensitive[™] imaging is available on the SL18-5 and SL10-2 breast presets to examine microvascular flow patterns
- Real-time SWE[™] for faster and more diagnostically complete BI-RADS lesion assessment
 - Real-time SWE[™] is available on all probes/presets in the Breast Application. With over 100 peerreviewed publications, SWE is the most studied shear-wave based elastography technology for breast cancer management
- Aixplorer's SLV16-5 is the only probe offering 3D SWE[™] for coronal plane lesion evaluation
- "TriVu" B, SWE, and COL+ is a unique real-time simultaneous mode which allows complex questions of anatomy, flow and tissue stiffness to be answered with precise correlation of imaging planes
- Biopsy steering enhances needle visualization during freehand procedures

AIXPLORER[®] V11 INNOVATION: TRIVU & ANGIO PL.U.S.

TriVu* B, SWE and Col+ Real-time imaging

- TriVu, is the first of its kind imaging mode that merges B-mode, SWE[™] and enhanced Color+ imaging, setting a new bar for both innovation and workflow.
- TriVu leverages the speed and power of UltraFast[™] plane wave imaging to capture BOTH shear wave propagation and blood flow simultaneously.
- When combined with Aixplorer's high resolution B-mode, this unique combination allows physicians to visualize anatomy, tissue stiffness and blood flow from precisely the same imaging plane, simultaneously and in real-time.

TriVu

TriVu* B, SWE and Col+ Real-time imaging

- High quality focused B-mode
- Maintains SWE[™] quality and performance
- COL+ plane wave imaging enhances low flow visualization in small vessels
- Real-time B-mode and Color frame rates
- Available on the: SL18-5, SL10-2 and SL15-4 in Breast & Thyroid presets

TriVu Presentation Options

TriVu Presentation Options

Full Screen with Opacity Control

Angio PL.U.S. PLanewave UltraSensitive[™] Imaging

A New Solution for Microvascular Imaging

Challenge:

Conventional color Doppler is limited in its ability to visualize microvascular flow

Conventional Color Doppler

Solution:

Angio PL.U.S. increased sensitivity and spatial resolution results in greater flow detail

Angio PL.U.S.

Angio PL.U.S. Probe & Preset Availability

Applications: Breast, Thyroid, Abdominal, MSK, Vascular, Gyn

Angio PL.U.S.

Conventional Color Doppler

Angio PL.U.S. HD Imaging

Highly vascular benign thyroid nodule

Angio PL.U.S.

Conventional Color Doppler

Focal Nodular Hyperplasia (FNH) in the Liver

Angio PL.U.S. XC6-1 Transducer

Angio PL.U.S. with dCPI in the Kidney

Angio PL.U.S. XC6-1 Transducer

Monochrome map demonstrating excellent vascular sensitivity in liver vessels.

AIXPLORER[®] V11 FUSION, NAVIGATION & NEEDLE GUIDANCE SOLUTIONS

Confidential

Fusion, Navigation & Needle Guidance On Aixplorer*

- Flexible package options for multi-modality imaging:
 - Fusion Imaging
 - Volume Navigation & Needle Guidance
 - Fusion, Volume Navigation & Needle Guidance
- Easily accessible through the "S-NAV" hard key*
- Available for XC6-1, SL10-2, SE12-3 & SEV12-3
 - All applications and presets on these probes are supported
 - Same hardware is required for Fusion, Volume Navigation & Needle Guidance options
- All imaging modes available in Fusion:
 - B, Color, real-time SWE, CEUS, Angio PL.U.S. & TriVu
 - Unique differentiator for guiding RFA/Biopsy, etc...

Fusion, Navigation & Needle Guidance On Aixplorer*

Fusion, Navigation & Needle Guidance On Aixplorer*

Fusion, Navigation & Needle Guidance

• Compare:

- Aixplorer's solution* is very similar to Virtual Navigator by Esaote, PercuNav by Philips, Volume Navigation & Needle Tracking on the GE Logiq E9
- Leverages industry standard hardware:
 - NDI Drivebay, CIVCO eTrax, virtuTrax, omniTrax, etc.
- Sensors are attached with custom probe brackets
- User Interface is customized for Aixplorer
- Advantages:
 - Perform real-time guidance with Aixplorer's unique SWE[™], Angio PL.U.S. RT, and TriVu real-time imaging modes

Multi-modality imaging + Innovative real-time imaging modes = More diagnostic power and confidence!

AIXPLORER[®] V11 EVOLUTION: WORKFLOW & MORE...

*Pending FDA 510k clearance

Hardware Evolution Expanded Connectivity and Storage

Aixplorer now features expanded Connectivity and Storage:

Dual Band WiFi*

- 2.4GHz 5GHz; 802.11b/g/n compliant
- External USB Dongle
- Adds wireless capability to all DICOM modalities
- Print to a WIFI capable printer

Larger Hard Drives

- 1 Tb Total (2 x 500Gb)
- Required for Navigation & Fusion

Wi Fi

26

Reporting Evolution OB and Liver Reporting

- New OB Tables have been added including ISOUG, and several CRL authors
- Custom OB tables can be added to Aixplorer upon request

Liver Report*

- Reference articles with data using Aixplorer in clinical research studies can be selected and displayed in the Liver Report
- Data is presented as a table with fibrosis cut-off values
- Papers cover various etiologies (HCV, HBV, NASH, etc.)

rt Builder		-				
it Data Images	Measurements V	Vorksheet Con	clusion			
insl						
Publish	ed Papers					
-	57					
Cassinotto C	C, Hepatology 2016, NAP	LD/NASH patients				
Fibrosis M	METAVIR Median	AUROC (95%	Youden Cut-off valu	e Rule-out cut-off val	ue Rule-in cut-off value	
stag		CI)	(kPa)	(kPa)	(kPa)	
F0-1		0.00 (0.70, 0.00)	0.0	2.0		
F2		0.86 (0.79-0.90) 0.89 (0.83-0.92)	8.9	6.3	8.7	
E FA		0.88 (0.82-0.92)	10.0	10.5	14.4	
The above measurer fibrosis seventy in p	hards are not from the swam. They are advents presenting with chronic hepato stiffness measurements, and any othe	extracted from the selected p isthes. Over atfinest values clinical and idagnostic morm	ublication and are shown for reference o have to be interpreted by a cirrician who stor for a given patient, and especially i	my. Liver stiffness measurements have bee specializes in hepatology and especially in :	2015 Dec 13. doi: 10.1002/hep.28394, proposed as a non-invasive indirect marker of its https://www.second.com/of/wates/ anston of these diagnostic cut-off wates/ depend com before generalizing clinical results.	
Concl	Published					
Concl	Published		LD/NASH patients			
on the da	Cassinotto C, Hepa Fibrosis METAV stage	tology 2016, NAF		ouden Cut-off value (KPa)	Rule-out cut-off value (kPa)	Rule-in cut-off val (kPa)
Concl	Cassinotto C, Hepa Fibrosis METAV stage F0-F1	tology 2016, NAF R Median (IQR) 6.0 (2.7)	AUROC (95% Y CI)	(kPa)	(kPa)	(kPa)
Concl Signat	Cassinotto C, Hepa Fibrosis METAV stage	tology 2016, NAF	AUROC (95% Y	CONTRACTOR CONTRA		Rule-in cut-off val (kPa) 8.7 10.7

CEUS and Sonic Research Evolution Available on Aixplorer systems in the USA*

- CEUS has been FDA approved in the USA for evaluation of liver lesions in Adult and Pediatric applications
- "Lumason" (SonoVue) optimizations available on:
 - XC6-1/Abdominal/Abdomen & Liver presets
 - XC6-1/Pediatric/Abdomen preset
 - SL10-2/Abdominal/Abdomen preset
 - SL10-2/Pediatric/Abdomen preset
- The SonicResearch package includes SWE data acquisition:
 - SWE raw data acquisition and processing
 - Downloadable custom acquisition sequences for B-mode and SWE
 - B-mode and UltraFast[™] data acquisition also available as in previous releases.
 - Simplified NDA process

*Pending FDA 510k clearance on Aixplorer

*CEUS quantification package is not available as Bracco's VueBox is not FDA approved in the United States

Workflow & Quality Improvements Quality, Workflow and User Feedback

- Presets & Patient Info
 - Custom settings not saved when creating new preset has been fixed
 - Applications staff may Hide/Show factory presets
 - Image zoom set back to 100% after preset selection
 - Patient name order & upper/lowercase issues corrected
- Imaging Workflow
 - Screen flashes while changing depth + imaging modes transition has been eliminated
 - Black touchscreen or image from other exams has been corrected
 - Depth & Focus graphics are now outside of the image area
 - Loop wrapping available when scrolling clips
 - Panoramic imaging issues on the SL15-4 Superficial Breast preset has been corrected
 - Reset to default zoom control now available

- Measurements
 - Multi Q-Box workflow ending after AutoTGC has been corrected
 - Prox/Mid/Dist or None modifier available for ICA/CCA vascular labeled measurements
 - Manual selection of PW goalposts
 - Dissociated Traces on TS has been corrected
- Reporting
 - Capability to select the order of images to be sent or printed from Review
- Customization
 - Custom rotation of Depth & Focus controls now available to the user
- Options Management
 - Capability to unlock an options file for a predetermined period of time to enhance Sales demos

AIXPLORER[®] V11 DIAGNOSTIC EXCELLENCE & INNOVATION

V11 Diagnostic Excellence & Innovation Summary

- Comprehensive and Confident Breast imaging
 - With a complete line of probes and innovative features, including the new SL18-5, Angio PL.U.S. and TriVu*
- TriVu real-time simultaneous plane wave technology
 - Setting a new bar for innovation and workflow by combining B-mode, SWE[™] and Color+ and into a powerful combined mode
- Angio PL.U.S. PLanewave UltraSensitive[™] imaging
 - A new solution for microvascular visualization
- Fusion, Navigation & Needle Guidance*
 - Synthesizing cross-modality diagnostic information for complete diagnostic imaging confidence
- Solution Evolution
 - New capabilities and enhancements in Imaging, Connectivity, Reporting, Workflow and Research

